
 

Millimeter-wave (mmWave) communication offers vast bandwidth but suffers from severe path loss and 

sensitivity to blockages. Massive MIMO and hybrid beamforming help address these challenges, yet real-world 

deployment remains limited by hardware cost and dynamic environments. 

Intelligent Reflecting Surfaces (IRSs) can reshape the wireless environment to enhance coverage and signal 

strength. However, optimizing IRS phase shifts and hybrid beamforming is non-trivial due to non-convexity and 

hardware constraints. Conventional algorithms often yield suboptimal solutions, dependent on initial conditions. 

This research introduces a Real-Valued Genetic Algorithm (RVGA)-based optimization framework for joint IRS 

and hybrid beamforming design. The goal is to maximize spectral efficiency while maintaining low complexity and 

robustness. We provide practical insights into the deployment of IRS-assisted mmWave MIMO-OFDM systems. 
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What is IRS? 

Fig. 1. Optimized SE vs. SINR 

Fig. 2. Algorithms comparison 
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1 Access Node (AN) 𝑁t antennas, 1 User Equipment (UE) 𝑁r antennas 

𝐼 Intelligent Reflecting Surfaces (IRSs) 𝑀 elements 

System 

The total downlink cascade channel on the 𝑘th subcarrier 

through 𝑖th IRS equipment: 

𝐇𝒊,𝑘
tot = 𝐇TI,𝑘

H 𝚯𝑖𝐇IU,𝑘 

where, 𝚯𝑖 = 𝑑𝑖𝑎𝑔(𝜃1, … , 𝜃𝑀) , the received signal on the 

𝑘th subcarrier through 𝑖th IRS equipment: 

𝒚𝑖,𝑘 = 𝐇𝒊,𝑘
tot𝐅RF𝐅BB,𝑘𝐬d + 𝐧𝑘 

𝐅RF  and 𝐅BB,𝑘  are analog and digital hybrid precoder, 

respectively. 𝐬d  and 𝐧𝑘  and 𝐧𝑘~𝒞𝒩(0, 𝜎2)  denote data 

symbols vector and Additive White Gaussian Noise matrix. 

The achievable spectral efficiency (SE) on the 𝑘th 

subcarrier through 𝑖th IRS equipment： 

𝑅𝑖,𝑘 = log2 det (𝐈 + 𝐑𝐧𝑘

−1𝐇𝒊,𝑘
tot𝐅RF𝐅BB,𝑘(𝐇𝒊,𝑘

tot𝐅RF𝐅BB,𝑘)
H

) 

where, 𝐑𝐧𝑘

−1 = 𝜎2 is the noise covariance matrix of 𝐧𝑘. 

Problem Formulation 

max
𝐅BB,𝑘, 𝐅RF,𝚯

1

𝐾
∑ ∑ 𝑅𝑖,𝑘

𝐾
𝑘=1

𝐼
𝑖=1 , 

𝑠. 𝑡. 𝐶1: |𝐅RF(𝑥, 𝑦)| =
1

√𝑁𝑡
, ∀𝑥, 𝑦, 

𝐶2: ‖𝐅BB,𝑘, 𝐅RF‖
F

2
≤ 𝑃𝑇,𝑘, 𝐶3: |𝜃𝑚| = 1. 

 

3 Optimizing Hybrid Precoder and IRS Phase Shifts Matrix 

Optimization variables initialization 

The digital baseband precoding matrix: 

𝐅BB,𝑘(𝑥, 𝑦) = 𝑓𝑥,𝑦 

𝑓𝑥,𝑦  represents the complex baseband weight applied, 

controls both the amplitude and phase contribution.  

The analog precoding matrix: 

𝐅RF(𝑥, 𝑦) =
1

√𝑁𝑡

𝑒𝑗𝜑𝑥,𝑦 

where 𝜑𝑥,𝑦 ∈ ሾ0,2𝜋) represents the phase of each phase 

shifter at the transmitter. 

Population initialization 

Initialize the chromosome 

𝐗tot = ൣ𝐗RF
F , 𝐗BB,𝑘

F , 𝐗I,𝑖൧
T

∈ ℝ1×𝐷tot 

where, 𝐗RF
F = arg(𝐅RF) , 𝐗I,𝑖  arg (𝜽𝑖(: )) , 𝐗BB,𝑘

F =

ൣRe(𝐅BB,𝑘), Im(𝐅BB,𝑘)൧, 𝐷tot = 𝑁𝑡
RF(𝑁𝑡 + 2𝑁𝑠) + 𝑁𝐼, 

where 𝑁𝑡
RF denotes the number of RF chain at 

transmitter and 𝑁𝑠 denotes the number of the 

data stream. 

Population initialization 

Initialize population for individual 

𝐱𝑝 = 𝐗tot + 𝒓, 𝑝 = 1, … , Popsize 
Specify fitness function 

The fitness function is defined as 

Fit𝑝 = 𝑅𝑖,𝑘 
Compute selection, crossover, and mutation 

The sum of fitness values and the selection 

probability of the 𝑝th individual  

Fitsum = ∑ Fit𝑝𝐷tot
𝑝 , 𝑃(𝑝) =

Fit𝑝

Fitsum
. 

4 RVGA Algorithm Flowchart 

Input data: 
population size 𝑃size, 
crossover 𝑝c and 
mutation 𝑝m 

probability, number 
of elite individuals 𝑝e,  
number of iterations 

𝐼iter, threshold 𝜖 

Initialize the optimization 
variables 𝐅BB,𝑘

0 , 𝐅RF
0 , 𝚯𝑖

0 and 
encode them as real-valued 
population vectors 𝐱tot,𝑘

𝑝
, 𝑝 =

1, …, 𝑃size 

Output optimized SE 

Replace population 

Mutations 
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IRS Hardware Structure: 

· Metasurface layer –
Printed metallic elements on a dielectric 
substrate for signal interaction 

· Isolation layer – Copper 
plate to prevent energy leakage 

· Control layer – Circuit board to 
adjust amplitude/phase and connect to 
controller 

IRS Application Scenario: 

· Coverage enhancement in 

blockage scenarios 

· Physical layer security 

enhancement 

· Cell-edge user performance 

optimization 

 

 

Why RVGA Works？ 

Unlike closed-form derivation methods, 
this approach does not require the 
optimization problem to be convex, nor 
does it reduce the problem's dimensionality 
to obtain a suboptimal closed-form 
solution. Instead, the algorithm can directly 
optimize the variables to determine the 
desired solution structure. 

 

Acknowledgement 

This work is supported in part by Research 
on Cognitive Non-Orthogonal Multiple 
Access Communication Based on Intelligent 
Reflecting Surfaces (D22022024360) under 
Grant BYJS202318, and in part by 
Sponsored by Natural Science Foundation 
of Chongqing, China under Grant 
CSTB2024NSCQ-LZX0134, and in part by 
the National Natural Science Foundation of 
China under Grant 62401093. 

Fig.1 presents the optimized spectral 

efficiency (SE) vs. SINR conditions, 

comparing scenarios without IRS, 1 

IRS, and 2 IRSs. The RVGA algorithm 

with 1 and 2 IRSs improves SE by 

9.09- and 10.95-bits/s/Hz, 

respectively, compared to no IRS.  

Fig. 2 compares SE performance of 

RVGA, CCPSO, and PSO in an ablation 

study. SE increases with SINR for all 

algorithms, with RVGA performing best, 

followed by steadily improving CCPSO. 

PSO shows the lowest performance but 

maintains an upward trend. 
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